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Mickens [1] presented a new class of non-linear oscillator equations which take the form
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"f (x)y,
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dt
"!g(y)x , (1)

where f (x) and g (x) are assumed to be continuous with continuous "rst derivatives, and
also satisfy the conditions

f (0)'0, g(0)'0. (2)

The corresponding second order, non-linear di!erential equation is
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f (x)
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where f �(x),d f/dx. The main purpose of this letter is to generalize equations (1). The
generalized equations have the form
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"f (x)y�,
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dt
"!g(y)x� , (4)

where m and n are positive odd numbers.
Equations (4) can be rewritten in the form of a single second order di!erential equation.

Obviously,
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Using the fact that
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and the second equation of equations (4), equation (5) has the form
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This equation is a generalized form of equation (3). If m"n"1, then equation (7)
coincides with equation (3). If f (x)"g (x)"1, and n"3, then equation (7) takes the
form [2]

d�x

dt�
#x�"0. (8)

This equation cannot be obtained from equation (3).
In the (x, y) phase space [3], the trajectories of equations (4) are determined by the "rst

order di!erential equation

dy

dx
"!

g (y)x�

f (x)y�
. (9)

The "xed points or equilibria (xN , yN ) correspond to the simultaneous solutions of the
equations

g (yN )xN �"0, f (xN )yN �"0. (10)

Obviously, (xN , yN )"(0, 0) is always a "xed point. The "rst integral [4] of equation (7) can be
determined by integrating equation (9); doing this yields

K(y)#<(x)"constant , (11)

where
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�
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f (w)
. (12)

K(y) and <(x) can be taken, respectively, as generalized kinetic and potential energies [1]
for the generalized harmonic oscillator described by either equations (4) or (7). Taking into
account the conditions given in equations (2), one has
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and

< (x)"�
�

�

w�dw

f (w)
"
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Substituting equations (13) and (14) into equation (11), one can see that the "xed point
(xN , yN )"(0, 0) is a center.
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